Quanto maior a distância da carga geradora maior a intensidade do campo elétrico?

Quanto maior a distância da carga geradora maior a intensidade do campo elétrico?

Como calcular a intensidade do campo elétrico?

A fórmula da intensidade, no Sistema Internacional de Unidade, é calculada em Newton por Coulomb (N/C). Tendo como prefixo Newton (N), como força, e Coulomb (C) como carga elétrica.

Qual a intensidade do campo elétrico?

No Sistema Internacional de Unidade, a intensidade do campo elétrico é medido em Newton por Coulomb (N/C), a força em Newton (N) e a carga elétrica em Coulomb (C).

Qual a fórmula de um campo elétrico?

Campo elétrico: E = F/q; Força elétrica: F = k.

Como fazer cálculo de força elétrica?

Para calcular a força elétrica os sinais das cargas elétricas não são levados em consideração, apenas seus valores....Para que é usada a fórmula da força elétrica e como calcular?

  1. Q1 = 2,0 x 10-6 C.
  2. Q2 = 8,0 x 10-6 C.
  3. Q3 = – 3,0 x 10-6 C.
  4. K N.m2/C.

Como calcular o campo elétrico Brainly?

A fórmula para esse cálculo é E = F/q. Sendo. E, o valor do Campo elétrico, F o valor da Força e q, o valor. da carga de prova.

O que é intensidade do campo elétrico?

O campo elétrico é o campo de força provocado pela ação de cargas elétricas, (elétrons, prótons ou íons) ou por um sistemas delas. Cargas elétricas num campo elétrico estão sujeitas e provocam forças elétricas.

Qual a intensidade do campo elétrico entre as placas?

A intensidade do campo elétrico uniforme (E=V/m) entre as placas A e B (horizontais) é de: a) 2.10^5.

Qual a fórmula do vetor campo elétrico e?

Dessa forma, define-se vetor campo elétrico em um ponto do espaço como a força elétrica por unidade de carga de prova ali colocada. ... No Sistema Internacional de Unidades (SI), a unidade do campo elétrico é N/C (newton/coulomb).

Qual é a intensidade do campo elétrico?

  • Fórmula do campo elétrico 1 E corresponde à intensidade do campo elétrico e sua unidade é N/C 2 K0 é a constante eletrostática no vácuo, cujo valor é 8,99.109 N.m 2 /C 2 3 |Q| é o módulo da carga que gerou o campo elétrico, ou seja, o sinal da carga não é considerado 4 d é a distância em metros entre o ponto observado e a carga geradora More ...

Como podemos calcular o valor do campo elétrico?

  • Mas será que podemos calcular também o valor do campo elétrico presente em uma região do espaço? Podemos também, calcular o valor do campo elétrico presente em uma região do espaço; pegando uma carga de prova q de valor conhecido e coloque-a em uma região do espaço onde exista um campo elétrico.

Qual a intensidade da força do campo elétrico?

  • A intensidade da força será maior quanto mais próximo a carga teste estiver da carga geradora do campo e menos intensa quanto mais longe da carga geradora. Pode-se calcular o campo elétrico utilizando a seguinte fórmula: |Q| é o módulo da carga que gerou o campo elétrico, ou seja, o sinal da carga não é considerado

Como é formado o campo elétrico?

  • O campo elétrico é formado por linhas de força que estão orientadas de acordo com o sentido do vetor campo elétrico. Quando a carga que gera o campo elétrico é positiva, as linhas de força são centrífugas, ou seja, partem do centro para fora. E quando a carga geradora é negativa, as linhas de força são centrípetas, isto é, de fora para dentro.

Avalie seus conhecimentos por meio desta lista de exercícios sobre campo elétrico, uma grandeza física que sempre aparece ao redor de um corpo carregado eletricamente. Publicado por: Pâmella Raphaella Melo

Analise as alternativas abaixo referentes às unidades de medida estudadas em eletrostática:

I. A unidade de medida da carga elétrica é metros por segundo.

II. A unidade de medida do campo elétrico é Newton por Coulomb.

III. A unidade de medida da força elétrica é Newton.

IV. A unidade de medida da constante eletrostática do meio é representada por \({\left(N\cdot m\right)^2/C}^2\) .

Qual alternativa está correta?

A) II, III e IV.

B) I, III e IV.

C) I, II e III

D) Todas estão corretas.

E) Todas estão incorretas.

Qual o valor da intensidade do campo elétrico no vácuo, a 13 cm  de uma carga elétrica de 2,6 n C?

A) \(1,3846\cdot{10}^9\ N/C\)

B) \(1,3846\cdot{10}^3\ N/C\)

C) \(1,3846\cdot{10}^{10}\ N/C\)

D) \({1,3846\cdot10}^{11}\ N/C\)

E) \(1,3846\cdot{10}^2\ N/C\)

Uma carga elétrica pontual de valor-24 μC  é posta em determinado lugar no vácuo, estando sujeita a uma força elétrica de valor 360 N . Considerando isso, encontre o módulo do campo elétrico dessa carga nesse lugar.

A) \(1,5\cdot{10}^5\ N/C\)

B) \(1,5\cdot{10}^6\ N/C\)

C) \(1,5\cdot{10}^7\ N/C\)

D) \(1,5\cdot{10}^8\ N/C\)

E) \(1,5\cdot{10}^9\ N/C\)

Duas cargas elétricas são separadas a uma distância de 300 cm  no vácuo. Encontre o valor da força elétrica entre elas e o campo elétrico da carga de menor valor, sabendo que suas cargas são 3,2C  e 5,6 C .

\(A) 5,6\cdot{10}^9\ N; 5,6\cdot{10}^{9\ }N/C.\)

\(B) 5,6\cdot{10}^9\ N; 17,92\cdot{10}^{9\ }N/C.\)

\(C) 17,92\cdot{10}^9\ N; 17,92\cdot{10}^{9\ }N/C.\)

\(D) 0\ N; 0\ N/C.\)

\(E)\ 17,92\cdot{10}^9\ N; 5,6\cdot{10}^{9\ }N/C.\)

Determine a intensidade do campo elétrico no vácuo de uma carga elétrica de 12 mC  a 2,5  metros.

A) \(1,728\cdot{10}^7\ N/C\)

B) \(1,425\cdot{10}^{-6}\ N/C\)

C) \(1,923\cdot{10}^{-3}\ N/C\)

D) \(1,631\cdot{10}^{10}\ N/C\ \)

E) \(1,3728\cdot{10}^8\ N/C\)

Uma carga elétrica de valor A produz um campo elétrico de 2500 N/C  e possui uma força elétrica atrativa de 100 N  com outra carga de valor B, que é o dobro de A. Considerando isso, determine o valor da carga Q e da carga q.

A) 0,03 C  e 0,06 C

B) 0,05 C  e 0,1 C

C) 0,04 C  e 0,08 C

D) 0,01 C  e 0,02 C

E) 0,02 C  e 0,04 C

A uma distância de 50 metros, temos o campo elétrico produzido por uma carga Q, cujo valor é de 12 C. Sabendo que aconstante eletrostática do vácuo vale 9 ∙109  N ∙ m2 / C2 , encontre o valor desse campo elétrico.

A) \(4,32\cdot{10}^9\ N/C\)

B) \(2,16\cdot{10}^{11\ }N/C\)

C) \(0\ N/C\)

D) \(2,16\cdot{10}^9\ N/C\)

E) \(4,32\cdot{10}^7\ N/C\)

De acordo com seus estudos a respeito do campo elétrico, alguma(s) das fórmulas abaixo não serve(m) para calculá-lo.

I. \(E=k\cdot\frac{Q}{d^2}\)

II. \(E=q\cdot V\)

III. \(E=\frac{F}{q}\)

Qual alternativa está correta?

A) I e II.

B) I e III.

C) II e III.

D) Todas estão corretas.

E) Todas estão incorretas.

(Uece) Considere o campo elétrico gerado por duas cargas elétricas puntiformes, de valores iguais e sinais contrários, separadas por uma distância d. Sobre esse vetor campo elétrico nos pontos equidistantes das cargas, é correto afirmar que

A) tem a direção perpendicular à linha que une as duas cargas e o mesmo sentido em todos esses pontos.

B) tem a mesma direção da linha que une as duas cargas, mas varia de sentido para cada ponto analisado.

C) tem a direção perpendicular à linha que une as duas cargas, mas varia de sentido para cada ponto analisado.

D) tem a mesma direção da linha que une as duas cargas e o mesmo sentido em todos esses pontos.

(Unesp) Modelos elétricos são frequentemente utilizados para explicar a transmissão de informações em diversos sistemas do corpo humano. O sistema nervoso, por exemplo, é composto por neurônios (figura 1), células delimitadas por uma fina membrana lipoproteica que separa o meio intracelular do meio extracelular. A parte interna da membrana é negativamente carregada e a parte externa possui carga positiva (figura 2), de maneira análoga ao que ocorre nas placas de um capacitor.

Quanto maior a distância da carga geradora maior a intensidade do campo elétrico?

A figura 3 representa um fragmento ampliado dessa membrana, de espessura d, que está sob ação de um campo elétrico uniforme, representado na figura por suas linhas de força paralelas entre si e orientadas para cima. A diferença de potencial entre o meio intracelular e o extracelular é V. Considerando a carga elétrica elementar como e, o íon de potássio K+, indicado na figura 3, sob ação desse campo elétrico, ficaria sujeito a uma força elétrica cujo módulo pode ser escrito por:

A) \(e\cdot V\cdot d\)

B) \(\frac{e\ \cdot\ d}{V}\)

C) \(\frac{V\ \cdot\ d}{e}\)

D) \(\frac{e}{V\ \cdot\ d}\)

E) \(\frac{e\ \cdot\ V}{d}\)

(Uece) Precipitador eletrostático é um equipamento que pode ser utilizado para remoção de pequenas partículas presentes nos gases de exaustão em chaminés industriais. O princípio básico de funcionamento do equipamento é a ionização dessas partículas, seguida de remoção pelo uso de um campo elétrico na região de passagem delas. Suponha que uma delas tenha massa m, adquira uma carga de valor q e fique submetida a um campo elétrico de módulo E. A força elétrica sobre essa partícula é dada por:

A) \(m\cdot q\cdot E\)

B) \(m\cdot E/q\cdot b\)

C) \(q/E\)

D) \(q\cdot E\)

(FEI SP) A intensidade do vetor campo elétrico num ponto P é 6∙105 N/C . Uma carga puntiforme q=3∙10-6 C colocada em P ficará sujeita a uma força elétrica cuja intensidade:

A) para o cálculo, necessita da constante do meio em que a carga se encontra.

B) para o cálculo, necessidade da distância.

C) vale2 N .

D) vale 2∙10-11 N .

E) vale 1,8 N .

respostas

Alternativa A

I. A unidade de medida da carga elétrica é metros por segundo. (Falso)

A unidade de medida da carga elétrica é Coulomb.

II. A unidade de medida do campo elétrico é Newton por Coulomb. (Verdadeiro)

III. A unidade de medida da força elétrica é Newton. (Verdadeiro)

IV. A unidade de medida da constante eletrostática do meio é representada por \({\left(N\cdot m\right)^2/C}^2\) . (Verdadeiro)

Voltar a questão

Alternativa B

Para encontrarmos o valor do campo elétrico, usaremos a sua fórmula:

\(E=k\cdot\frac{Q}{d^2}\) 

Primeiramente, converteremos a distância de centímetros para metros, em que 13 cm=0,13 m , e lembrando que k  é a constante eletrostática do meio. Como estamos trabalhando com uma carga no vácuo, o k  vale 9∙109 N∙m2/C2 , então:

\(E=9\cdot{10}^9\cdot\frac{2,6\ n}{{0,13}^2}\) 

Como o n  significa nano, cujo valor é de 10-9 , temos:

\(E=9\cdot{10}^9\cdot\frac{2,6\cdot{10}^{-9}}{{0,13}^2}\) 

\(E=9\cdot{10}^9\cdot\frac{2,6\cdot{10}^{-9}}{0,0169}\) 

\(E=\frac{9\cdot2,6\cdot{10}^{9-9}}{0,0169}\) 

\(E=\frac{23,4\cdot{10}^0}{0,0169}\) 

\(E=\frac{23,4\cdot1}{0,0169}\) 

\(E\approx1384,6\) 

\(E\approx1,3846\cdot{10}^3\ N/C\) 

Voltar a questão

Alternativa C

Para encontrarmos o valor desse campo elétrico, é necessário utilizarmos a fórmula que o relaciona à carga elétrica e à força elétrica:

\(F=\left|q\right|\cdot E\) 

\(360=\left|-24\ \mu\right|\cdot E\) 

Como o μ  significa micro, cujo valor é de 10-6 , então:

\(360=\left|-24\cdot{10}^{-6}\right|\cdot E\) 

\(360=24\cdot{10}^{-6}\cdot E\) 

\(E=\frac{360}{24\cdot{10}^{-6}}\) 

\(E=\frac{15}{{10}^{-6}}\) 

\(E=15\cdot{10}^6\) 

\(E=1,5\cdot{10}^1\cdot{10}^6\) 

\(E=1,5\cdot{10}^{1+6}\) 

\(E=1,5\cdot{10}^7\ N/C\) 

Voltar a questão

Alternativa E

Encontraremos o valor da força elétrica entre as cargas elétricas com base na lei de Coulomb:

\(F=k\frac{Q_1\cdot Q_2}{d^2}\) 

Convertendo a distância de centímetros para metros, 300 cm=3 m , então:

\(F=9\cdot{10}^9\cdot\frac{3,2\cdot5,6}{3^2}\) 

\(F=\frac{9\cdot{10}^9\cdot17,92}{9}\) 

\(F=17,92\cdot{10}^9\ N\) 

Já o campo elétrico podemos encontrar pela fórmula que o relaciona à força e à carga elétrica:

\(F=\left|q\right|\cdot E\) 

\(17,92\cdot{10}^9=\left|3,2\right|\cdot E\) 

\(17,92\cdot{10}^9=3,2\cdot E\) 

\(\frac{17,92\cdot{10}^9}{3,2}=E\) 

\(5,6\cdot{10}^9 N/C=E \)

Voltar a questão

Alternativa A

Determinaremos o valor do campo elétrico por sua fórmula:

\(E=k\cdot\frac{Q}{d^2}\) 

\(E=9\cdot{10}^9\cdot\frac{12\ m}{{2,5}^2}\) 

Como o m  significa mili, cujo valor é de 10-3 , então:

\(E=9\cdot{10}^9\cdot\frac{12\cdot{10}^{-3}}{{2,5}^2}\) 

\(E=\frac{108\cdot{10}^{9-3}}{6,25}\) 

\(E=17,28\cdot{10}^6\ \) 

\(E=1,728\cdot{10}^1\cdot{10}^6\ \) 

\(E=1,728\cdot{10}^{6+1}\ \) 

\(E=1,728\cdot{10}^7\ N/C\ \)

Voltar a questão

Alternativa C

Primeiramente encontraremos o valor da carga A, já que nos foi dada as informações sobre seu campo elétrico e força elétrica, então utilizaremos a fórmula que envolva isso:

\(F=\left|q\right|\cdot E\) 

\(100=\left|A\right|\cdot2500\) 

\(A=\frac{100}{2500}\) 

\(A=0,04\ C\) 

A primeira carga tem valor de 0,04 C , já a segunda carga possui valor B, que é o dobro do valor de A, então:

\(B=2\cdot A\) 

\(B=2\cdot0,04\) 

\(B=0,08\ C\) 

Voltar a questão

Alternativa E

Utilizando a fórmula do campo elétrico, obtemos:

\(E=k\cdot\frac{Q}{d^2}\) 

\(E=9\cdot{10}^9\cdot\frac{12}{{50}^2}\) 

\(E=9\cdot{10}^9\cdot\frac{12}{2500}\) 

\(E=9\cdot{10}^9\cdot0,0048\) 

\(E={10}^9\cdot0,0432\) 

\(E={10}^9\cdot4,32\cdot{10}^{-2}\) 

\(E=4,32\cdot{10}^{-2+9}\) 

\(E=4,32\cdot{10}^7N/C\) 

Voltar a questão

Alternativa B

I. \(E=k\cdot\frac{Q}{d^2}\)  (Verdadeira)

II. \(E=q\cdot V \) (Falsa)

Essa fórmula, na verdade, é \(E_P=q\cdot V\) , usada para calcular a energia potencial elétrica.

III. \(E=\frac{F}{q}\)  (Verdadeira)

Voltar a questão

Alternativa D

De acordo com os estudos a respeito do vetor campo elétrico, sabemos que, nos pontos equidistantes das cargas, ele tem a mesma direção da linha que une as duas cargas elétricas e o mesmo sentido em todos esses pontos, já que o vetor campo elétrico tangencia as linhas de força em cada um desses pontos.

Voltar a questão

Alternativa D

Para encontrarmos a fórmula da força elétrica para esse caso, precisamos partir da fórmula que envolve a diferença de potencial e o campo elétrico:

\(V=E\ \cdot\ d\) 

Sabendo que o campo elétrico está relacionado com a força elétrica e a carga elétrica pela fórmula

\(E=\frac{F}{q}\) 

E substituindo essa fórmula no lugar do campo elétrico na primeira fórmula, obtemos:

\(V=\frac{F}{q}\ \cdot\ d\) 

Isolando a força elétrica, temos:

\(F=\frac{q\cdot V}{d}\) 

Sabendo que q pode ser encontrado pela fórmula q=n∙e , em que n  corresponde a um íon de potássio, a carga q é igual à carga elementar e:

\(F=\frac{e\cdot V}{d}\) 

Voltar a questão

Alternativa D

Para encontrarmos a força elétrica, utilizaremos a fórmula que a relaciona ao campo elétrico e à carga elétrica, sendo:

\(F=q\cdot E\) 

Voltar a questão

Alternativa E

Para encontrarmos a força elétrica, usaremos a fórmula que a relaciona ao campo elétrico e à carga elétrica, sendo:

\(F=q\cdot E\) 

\(F=3\cdot{10}^{-6}\cdot6\cdot{10}^5\) 

\(F=18\cdot{10}^{-6+5}\) 

\(F=18\cdot{10}^{-1}\) 

\(F=1,8\ N\) 

Voltar a questão

Quanto maior a distância da carga geradora maior a intensidade do campo elétrico?

Leia o artigo relacionado a este exercício e esclareça suas dúvidas

Assista às nossas videoaulas

Quanto maior a distância da carga geradora maior é a intensidade do campo elétrico?

Em outras palavras, o campo elétrico mede a influência que uma certa carga produz em seus arredores. Quanto mais próximas estiverem duas cargas, maior será a força elétrica entre elas por causa do módulo do campo elétrico naquela região.

Quanto mais próximo da carga geradora maior será esse campo elétrico?

Quanto mais próximos estivermos de uma fonte de campo elétrico (carga positiva), maior será o potencial elétrico na região. De forma similar, quanto mais próximos estivermos das cargas negativas (sumidouros de campo elétrico), menor será o potencial elétrico.

Qual a relação da distância e a carga elétrica que produz o campo elétrico?

“A força de ação mútua entre dois corpos carregados tem a direção da linha que une os corpos e sua intensidade é diretamente proporcional ao produto das cargas e inversamente proporcional ao quadrado da distância que as separa”.

Qual é a influência entre a distância é o campo elétrico?

As linhas de força, também chamadas de linhas de fluxo, são formas gráficas de visualização do campo elétrico. Essas linhas possuem orientações tangentes que apontam a direção e o sentido do campo. Quanto mais próximo essas linhas do campo, maior a intensidade, bem como mais distantes, menor a intensidade.